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This article examines two models of turbulence that are in wide use: the one-parameter 
model described in [I] and the two-parameter model described in [2]. The modifications to 
these models proposed here will make it possible to appreciably more accurately describe 
the mixing of an axisymmetric jet. 

i. Interpretation of the Prandtl Theory for Plane and Axisymmetric Jet Flows. The 

system of steady-state Reynolds equations for an isobaric turbulent jet flow of an incom- 
pressible liquid (density P = const) has the form 

~ + ~ -  = ( -  g~=-s =o, oy y~ oy ~ + W 

where i = 0, 1 in the plane and axisymmetric cases; the superimposed bar denotes averaging. 
We close the system by means of the Boussinesq hypothesis 

" " a ~ l a y  --l~ U = 8 

(s is the eddy viscosity coefficient). To construct a theory of turbulent transport for e, 
Prandtl [3] used conditional reasoning in regard to the transport of large-scale particles 
of fluid (conditionally referred to as moles) by a random pressure fluid. This theory has 
since been called the "mixing length" theory. Following Prandtl, we will examine the mech- 
anism of turbulent transport for e by using the example of the turbulent flow of fluid with 

uniform shear (~ ~ 0,~ ~ 0,0~/0x ~ O, O~/ag ~ const ~ 0). Let a certain mole obtain momentum in 

the transverse direction y. As a result of this, its transverse component of velocity be- 
comes equal to v', while the mole itself is displaced on the characteristic "mixing length" s 
In undergoing this displacement, the mole displaces the mole previously located in its new 
position. We will assume that the longtitudinal component of the velocity of the mole re- 
mains unchanged during its displacement. The difference between the longitudinal components 
of the velocity of the displacing and displaced moles will be u' z -tag/Oy. Now we can 

easily obtain an estimate for the correlation u ' v  ~ ~ - - l u - -~ (8~ /SY)  1 of interest to us. Thus, in 

accordance with the "mixing length" theory, the eddy viscosity coefficient is the correla- 

tion s The same result is obtained in the axisymmetric case. In the present study, we 
obtainedoa difference between the plane and axisymmetric cases thanks to the following 
modification of the mixing-length theory. 

Let us examine the motion of a mole in a plane yOz perpendicular to the vector of mean 
velocity. Following the logical reasoning behind the mixing length theory, we introduce 
the characteristic distance s over which the mole is displaced due to the random pulsative 
action of the pressure fluid on it. We assume that the mole has the form of a sphere with 
the radius R = s and can be displaced in any direction in the plane yOz. One of the 
possible final positions of the mole is shown in Fig. 1 by the dashed line. 

It should be noted that the above assumption (s = 2R) means that the Lagrangian and 
Eulerian spatial scales of turbulence are equal. However, experimental data [4] indicates 
that there is a substantial difference between these scales. For jet flow, the ratio of 
the Lagrangian scale to the Eulerian scale is roughly 0.6. 

The region within which the mole can move is represented by a circle~ with the radius 
3R (Fig. i). The site where the given mole might end up can initially be occupied by a 
mole whose center has the ordinate (Y0 + 2R) or (Y0 -- 2R). At first, these moles belong 
to the regions represented by horizontal bands I and II in Fig. i. We will henceforth be 
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interested in the region of intersection of these bands and the circle of radius 3R (hatched 
in Fig. i). In the plane case, the area of each hatched region S0=R219 arctan(V8)-}'~ ~ 8.25R2 

A different pattern will be seen in the axisymmetric turbulent flow of fluid with uni- 
form shear, when 

=-- O, ~ ~ O, Og/Ox ~ O, Og/Or =-- coast  # O. 

Here, r ~ yy2+ z 2. We will examine the pulsative motion of a mole in the plane rO(p (where ~ 

is the azimuthal angle). Regions which are horizontal bands in the plane case will become 
bent bands having the same width 2R as previously. The boundaries of the bent bands are 
circles (Fig. 2). The regions of intersection of the bent bands and the circle of radius 
3R, hatched in Fig. 2, will now be unequal. The area S I of the upper region will be greater 
than the area of the lower region S 2. We establish the following connection between these 
areas and the approximate probabilities o I and o 2 for the displacements of the given mole 
and positive and negative values of v', respectively: 

~t = SI/(S1 + $2), o~ = $2/($1 + $2). 

We perform an approximate averaging of the pulsations of the longitudinal component of 
velocity, using the probabilities 01 and ~2 as weight factors: 

( ( u'~-~fYi - - l l T f ) ~ - q ~  l l o r /  ~lar S2q_Sl"  ( 1 . 1 )  

Whereas such averaging yields a zero value for u' in the plane case, in the axis~nmetric 
case we obtain a nontrivial profile ue(r) m u'(r). Strictly speaking, this result is incom- 
patible with the notion of pulsation. 

We introduce the effective profile of the longitudinal component of velocity u m by 
means of the relation u m + u e = 5. Having made use of (i.i), after performing the necessary 
transformations we obtain 

= -D-F [i -- Kg ( r , ) j ,  r .  := ~-~, g ( r , )  = ~ or,~S2 d- S i ) '  
(i.2) 

where K = 0.5 is a coefficient connected with the above ratio of the Lagrangian and Eulerian 
scales. By changing this coefficient, we can henceforth correct the reduction in the modulus 
of the gradient of effective velocity [Sum/Sr [ . If we make use of the approximate relation 
(S l + S 2) = 2S 0, then the function g(r,) takes the simpler form 

g (r,) = ~ t - - s 7 - o  }. 
(1.3) 
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Equation (1.3) can be expressed analytically. Solving the geometric problem of finding 
the areas S z and S 2 and then differentiating the relative difference between the areas with 
respect to r,, after the transformations we find 

[ i g ( r , )  ---- 9 arctg (] /8)  --  W8 (2r ,  - 1) a r c t g ,  2 r q - -  r .  ----"2 @ 

[2]/2~+__r___*~11 2 ( V 2 r 2 , _ r , _ t + V ~ 2 r ~ ,  , r , _ l ) ] .  -+- (2 r ,  + 1) a rc tg  \ 2r2, ,-I- r ,  -- 2 ] -- r .  T 

(1.4) 

Let us analyze the resulting solution at r, + ~. Expanding (1.4) into a series in the 
small parameter r~ z and retaining the principal term of the expansion, after transformations 
we obtain the asymptotic relation 

t6V5 
g (r,) -= 3r,2 19 arctg (]/8) --  -W81 r , ~ 2 0 .  

The proposed theory is not valid within the region 0 ~ r, < 1.5, since in this case 

a different interpretation is needed for displacement of the mole in the direction of the 
symmetry axis. Let us try extrapolating the function g(r,) (1.4) to the axis (r, = 0). Rep- 

resenting g(r,) in the form of a quadratic polynomial and requiring that the function and 

its derivative be continuous at r, = 1.5 and be equal to zero at r, = 0, after calculation 

we find that g(0) z 1.0102. Taking this result into account, we correct the extrapolated 

function as follows: 

g ( r , )  = 1 - -  [1 - -  g (t,5)1 (2r , /3)  2, 0 <~ r ,  < 1,5. ( 1 . 5 )  

Figure 3 shows the graph of the function g(r,) [see (1.4) and (1.5)]. It is evident 
that the function decreases monotonically with an increase in r,. 

Thus, the proposed interpretation of the Prandtl theory for axisymmetric flow makes 
it possible to introduce the effective modulus of the gradient of velocity (18Um/Srl), which 
is connected with the modulus of the gradient of mean velocity ([Sfi/Sr I) by (1.2). 

2. Modification of Turbulence Models. First we will use the above result to improve 
the one-parameter turbulence model in [i]. In the case of an axisymmetric jet of an incom- 
pressible fluid (p = const) this model has the following form (with the averaging symbol 
henceforth being omitted) 

10ol Oe 06 2 o re  ~r  ~ e a .  
u-~z + v'g? = r ar ~'f ( 2 . 1 )  

It was assumed in [i] that a = 0.2 for jet flows. In the present study, a is deter- 
mined as 

a = 0,2 [1 -- Kg(O,5r/R)]. (2.2) 
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By introducing the additional factor in the square brackets, we take into account the above- 
noted decrease in the modulus of the effective velocity gradient (see Eq. (1.2)). 

We now establish the reliability between the radius of the mole R and the character- 
istics of the flow. We assume that the radius of the mole is equal to the integral scale 
of turbulence in the transverse direction: 

R = L~. ( 2 . 3 )  

We then use the following experimental data, presented in [5], for the middle of the 
plane mixing layer of an incompressible fluid 

e l ( U x ) = ( l , 6  - 2,2) �9 10 -3 , Lr = 0 .04x 

~'q/U ~ 0,t9,  ~[aulau[ .~ 0,3q. ( 2 . 4 )  

Here, U is the velocity of the jet; and q is turbulence energy. Using (2.3-2.4), after 
transformation we obtain the sought relationship between the radius of the mole and the 
characteristics of the flow: 

R =  V~ C =  0,38-0.53.  c l / ~  ' , ( 2 . 5 )  

Thus, a modified one-parameter turbulence model is described by relations (1.4-io5), 
(2.1-2.2), (2.5) and two constants K and C. 

We use a similar modification for the two-parameter model in [2], which includes equa- 
tions for turbulence energy q and rate of dissipation m. In the case of axisymmetric isobaric 
jet flow of an incompressible fluid (p = const), this model has the form 

uOq._rvaq t 0 re-a-r -~ -P- -o ) ;  
Ox Or r Or 

u 7z + v'~'r = r a r  -~r § t , 45P  - -  2o ; 

e - - - - -O ,O9q%-~ ,P=e l~r l  z. 

(2.6) 

(2.7) 

(2.8) 

The modification involves replacing the velocity gradient in the expression for the 
product P by its effective value Pm" Having used Eq. (1.2), we obtain an expression for 
the modified product: 

,0it 2 
P m = e ] ~  [ ] - -  Kg(O,5r/R)] 2. ( 2 . 9 )  

Thus, the modified two-parameter turbulence model is described by relations (1.4-1.5), 
(2.5-2.9) and the two constants C and K. 

3. Calculation of an Axisymmetric Jet. To check the effectiveness of the modified 
turbulence models, we performed calculations of an isobaric submerged jet of an incompressible 
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fluid (p = const). The initial profiles of relative velocity u a ~ u(x, r)/u(0, 0) and the 
relative coefficient of eddy viscosity ga ~ 2E(x, r)/(u(0, 0)D) were assigned in the form 

t, r/D ~ 0,45, 
u= (0, r) = t0 (1 -- 2r/D), 0,45 < r/D ~ 0,5, 

O, r/D > 0,5, 
eo, r/D ~ 0,5, 

s=(O,r)= O, r/D>0,5,  

where D is the diameter of the nozzle; the value of E0 was found from the condition that 
the Reynolds number Re D ~ VD/g 0 = I0 ~. The velocity V was determined as follows: 

/ - -  DI2 

2 ~ f f  2 ! u2(O,t) tdt. V = -  B 

The calculation was performed by means of a conservative finite-difference scheme [6] 
of first-order accuracy. The number of nodes of the mesh in the cross section of the jet 
was equal to 160 and 320. The difference between the results of calculations performed on 
coarse and fine meshes was no greater than 1%. The calculated results were compared with 
Rhode's experimental data [7]. When we used the modified one-parameter model, the best 
agreement between the theoretical and experimental data was obtained at C = 0.47 and K = i, 
while the best agreement in the case of the two-parameter model was obtained at C = 0.62 
and K = i. The results of calculations performed with the one- and two parameter models are 
shown in Figs. 4-6 by the solid and dashed lines, respectively. Calculations were performed 
both with and without the modifications. The lines found with the modifications are desig- 
nated by the number i. Figures 4 and 5 show data on the change of relative velocity u a and 
relative half-width r0 ~ r+/D along the axis (x 0 ~ x/D). The relative half-width was deter- 

mined from the velocity profile with the use of the relation u(x, r+) = 0.5u(x, 0). 

Figure 6 shows the profile of relative velocity u a in the section x/D = 40. It is 
evident that the modifications of the turbulence models significantly improve the accuracy 
with which mixing in an axisymmetric jet is described. 

We also calculated the rate of expansion of the jet r'0 = dr+/dx in its axial section 

(60 < x/D < i00). Whereas r' 0 = 0.244 before modification for the one-parameter model, 

r' 0 = 0.091 after the modification of this model. In the case of the two-parameter model, 

r' 0 = 0.142 before modification and r' 0 = 0.085 after modification. 

It should be noted that for the two-parameter model in [8], the allowances made for 
axisymmetric flow were based on considerations different from those discussed in the present 

article. 

The authors thank A. N. iSekundov for the useful advice given in the course of our in- 

vestigation. 
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